Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 244 | chris | 1 | /* |
| 2 | * jccoefct.c |
||
| 3 | * |
||
| 4 | * Copyright (C) 1994-1997, Thomas G. Lane. |
||
| 5 | * This file is part of the Independent JPEG Group's software. |
||
| 6 | * For conditions of distribution and use, see the accompanying README file. |
||
| 7 | * |
||
| 8 | * This file contains the coefficient buffer controller for compression. |
||
| 9 | * This controller is the top level of the JPEG compressor proper. |
||
| 10 | * The coefficient buffer lies between forward-DCT and entropy encoding steps. |
||
| 11 | */ |
||
| 12 | |||
| 13 | #define JPEG_INTERNALS |
||
| 14 | #include "jinclude.h" |
||
| 15 | #include "jpeglib.h" |
||
| 16 | |||
| 17 | |||
| 18 | /* We use a full-image coefficient buffer when doing Huffman optimization, |
||
| 19 | * and also for writing multiple-scan JPEG files. In all cases, the DCT |
||
| 20 | * step is run during the first pass, and subsequent passes need only read |
||
| 21 | * the buffered coefficients. |
||
| 22 | */ |
||
| 23 | #ifdef ENTROPY_OPT_SUPPORTED |
||
| 24 | #define FULL_COEF_BUFFER_SUPPORTED |
||
| 25 | #else |
||
| 26 | #ifdef C_MULTISCAN_FILES_SUPPORTED |
||
| 27 | #define FULL_COEF_BUFFER_SUPPORTED |
||
| 28 | #endif |
||
| 29 | #endif |
||
| 30 | |||
| 31 | |||
| 32 | /* Private buffer controller object */ |
||
| 33 | |||
| 34 | typedef struct { |
||
| 35 | struct jpeg_c_coef_controller pub; /* public fields */ |
||
| 36 | |||
| 37 | JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
||
| 38 | JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
||
| 39 | int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
||
| 40 | int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
||
| 41 | |||
| 42 | /* For single-pass compression, it's sufficient to buffer just one MCU |
||
| 43 | * (although this may prove a bit slow in practice). We allocate a |
||
| 44 | * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each |
||
| 45 | * MCU constructed and sent. (On 80x86, the workspace is FAR even though |
||
| 46 | * it's not really very big; this is to keep the module interfaces unchanged |
||
| 47 | * when a large coefficient buffer is necessary.) |
||
| 48 | * In multi-pass modes, this array points to the current MCU's blocks |
||
| 49 | * within the virtual arrays. |
||
| 50 | */ |
||
| 51 | JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
||
| 52 | |||
| 53 | /* In multi-pass modes, we need a virtual block array for each component. */ |
||
| 54 | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
||
| 55 | } my_coef_controller; |
||
| 56 | |||
| 57 | typedef my_coef_controller * my_coef_ptr; |
||
| 58 | |||
| 59 | |||
| 60 | /* Forward declarations */ |
||
| 61 | METHODDEF(boolean) compress_data |
||
| 62 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
||
| 63 | #ifdef FULL_COEF_BUFFER_SUPPORTED |
||
| 64 | METHODDEF(boolean) compress_first_pass |
||
| 65 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
||
| 66 | METHODDEF(boolean) compress_output |
||
| 67 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
||
| 68 | #endif |
||
| 69 | |||
| 70 | |||
| 71 | LOCAL(void) |
||
| 72 | start_iMCU_row (j_compress_ptr cinfo) |
||
| 73 | /* Reset within-iMCU-row counters for a new row */ |
||
| 74 | { |
||
| 75 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||
| 76 | |||
| 77 | /* In an interleaved scan, an MCU row is the same as an iMCU row. |
||
| 78 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
||
| 79 | * But at the bottom of the image, process only what's left. |
||
| 80 | */ |
||
| 81 | if (cinfo->comps_in_scan > 1) { |
||
| 82 | coef->MCU_rows_per_iMCU_row = 1; |
||
| 83 | } else { |
||
| 84 | if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
||
| 85 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
||
| 86 | else |
||
| 87 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
||
| 88 | } |
||
| 89 | |||
| 90 | coef->mcu_ctr = 0; |
||
| 91 | coef->MCU_vert_offset = 0; |
||
| 92 | } |
||
| 93 | |||
| 94 | |||
| 95 | /* |
||
| 96 | * Initialize for a processing pass. |
||
| 97 | */ |
||
| 98 | |||
| 99 | METHODDEF(void) |
||
| 100 | start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
||
| 101 | { |
||
| 102 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||
| 103 | |||
| 104 | coef->iMCU_row_num = 0; |
||
| 105 | start_iMCU_row(cinfo); |
||
| 106 | |||
| 107 | switch (pass_mode) { |
||
| 108 | case JBUF_PASS_THRU: |
||
| 109 | if (coef->whole_image[0] != NULL) |
||
| 110 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||
| 111 | coef->pub.compress_data = compress_data; |
||
| 112 | break; |
||
| 113 | #ifdef FULL_COEF_BUFFER_SUPPORTED |
||
| 114 | case JBUF_SAVE_AND_PASS: |
||
| 115 | if (coef->whole_image[0] == NULL) |
||
| 116 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||
| 117 | coef->pub.compress_data = compress_first_pass; |
||
| 118 | break; |
||
| 119 | case JBUF_CRANK_DEST: |
||
| 120 | if (coef->whole_image[0] == NULL) |
||
| 121 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||
| 122 | coef->pub.compress_data = compress_output; |
||
| 123 | break; |
||
| 124 | #endif |
||
| 125 | default: |
||
| 126 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||
| 127 | break; |
||
| 128 | } |
||
| 129 | } |
||
| 130 | |||
| 131 | |||
| 132 | /* |
||
| 133 | * Process some data in the single-pass case. |
||
| 134 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||
| 135 | * per call, ie, v_samp_factor block rows for each component in the image. |
||
| 136 | * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
||
| 137 | * |
||
| 138 | * NB: input_buf contains a plane for each component in image, |
||
| 139 | * which we index according to the component's SOF position. |
||
| 140 | */ |
||
| 141 | |||
| 142 | METHODDEF(boolean) |
||
| 143 | compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||
| 144 | { |
||
| 145 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||
| 146 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||
| 147 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
||
| 148 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||
| 149 | int blkn, bi, ci, yindex, yoffset, blockcnt; |
||
| 150 | JDIMENSION ypos, xpos; |
||
| 151 | jpeg_component_info *compptr; |
||
| 152 | |||
| 153 | /* Loop to write as much as one whole iMCU row */ |
||
| 154 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||
| 155 | yoffset++) { |
||
| 156 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; |
||
| 157 | MCU_col_num++) { |
||
| 158 | /* Determine where data comes from in input_buf and do the DCT thing. |
||
| 159 | * Each call on forward_DCT processes a horizontal row of DCT blocks |
||
| 160 | * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks |
||
| 161 | * sequentially. Dummy blocks at the right or bottom edge are filled in |
||
| 162 | * specially. The data in them does not matter for image reconstruction, |
||
| 163 | * so we fill them with values that will encode to the smallest amount of |
||
| 164 | * data, viz: all zeroes in the AC entries, DC entries equal to previous |
||
| 165 | * block's DC value. (Thanks to Thomas Kinsman for this idea.) |
||
| 166 | */ |
||
| 167 | blkn = 0; |
||
| 168 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||
| 169 | compptr = cinfo->cur_comp_info[ci]; |
||
| 170 | blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
||
| 171 | : compptr->last_col_width; |
||
| 172 | xpos = MCU_col_num * compptr->MCU_sample_width; |
||
| 173 | ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ |
||
| 174 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||
| 175 | if (coef->iMCU_row_num < last_iMCU_row || |
||
| 176 | yoffset+yindex < compptr->last_row_height) { |
||
| 177 | (*cinfo->fdct->forward_DCT) (cinfo, compptr, |
||
| 178 | input_buf[compptr->component_index], |
||
| 179 | coef->MCU_buffer[blkn], |
||
| 180 | ypos, xpos, (JDIMENSION) blockcnt); |
||
| 181 | if (blockcnt < compptr->MCU_width) { |
||
| 182 | /* Create some dummy blocks at the right edge of the image. */ |
||
| 183 | jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], |
||
| 184 | (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); |
||
| 185 | for (bi = blockcnt; bi < compptr->MCU_width; bi++) { |
||
| 186 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; |
||
| 187 | } |
||
| 188 | } |
||
| 189 | } else { |
||
| 190 | /* Create a row of dummy blocks at the bottom of the image. */ |
||
| 191 | jzero_far((void FAR *) coef->MCU_buffer[blkn], |
||
| 192 | compptr->MCU_width * SIZEOF(JBLOCK)); |
||
| 193 | for (bi = 0; bi < compptr->MCU_width; bi++) { |
||
| 194 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; |
||
| 195 | } |
||
| 196 | } |
||
| 197 | blkn += compptr->MCU_width; |
||
| 198 | ypos += DCTSIZE; |
||
| 199 | } |
||
| 200 | } |
||
| 201 | /* Try to write the MCU. In event of a suspension failure, we will |
||
| 202 | * re-DCT the MCU on restart (a bit inefficient, could be fixed...) |
||
| 203 | */ |
||
| 204 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
||
| 205 | /* Suspension forced; update state counters and exit */ |
||
| 206 | coef->MCU_vert_offset = yoffset; |
||
| 207 | coef->mcu_ctr = MCU_col_num; |
||
| 208 | return FALSE; |
||
| 209 | } |
||
| 210 | } |
||
| 211 | /* Completed an MCU row, but perhaps not an iMCU row */ |
||
| 212 | coef->mcu_ctr = 0; |
||
| 213 | } |
||
| 214 | /* Completed the iMCU row, advance counters for next one */ |
||
| 215 | coef->iMCU_row_num++; |
||
| 216 | start_iMCU_row(cinfo); |
||
| 217 | return TRUE; |
||
| 218 | } |
||
| 219 | |||
| 220 | |||
| 221 | #ifdef FULL_COEF_BUFFER_SUPPORTED |
||
| 222 | |||
| 223 | /* |
||
| 224 | * Process some data in the first pass of a multi-pass case. |
||
| 225 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||
| 226 | * per call, ie, v_samp_factor block rows for each component in the image. |
||
| 227 | * This amount of data is read from the source buffer, DCT'd and quantized, |
||
| 228 | * and saved into the virtual arrays. We also generate suitable dummy blocks |
||
| 229 | * as needed at the right and lower edges. (The dummy blocks are constructed |
||
| 230 | * in the virtual arrays, which have been padded appropriately.) This makes |
||
| 231 | * it possible for subsequent passes not to worry about real vs. dummy blocks. |
||
| 232 | * |
||
| 233 | * We must also emit the data to the entropy encoder. This is conveniently |
||
| 234 | * done by calling compress_output() after we've loaded the current strip |
||
| 235 | * of the virtual arrays. |
||
| 236 | * |
||
| 237 | * NB: input_buf contains a plane for each component in image. All |
||
| 238 | * components are DCT'd and loaded into the virtual arrays in this pass. |
||
| 239 | * However, it may be that only a subset of the components are emitted to |
||
| 240 | * the entropy encoder during this first pass; be careful about looking |
||
| 241 | * at the scan-dependent variables (MCU dimensions, etc). |
||
| 242 | */ |
||
| 243 | |||
| 244 | METHODDEF(boolean) |
||
| 245 | compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||
| 246 | { |
||
| 247 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||
| 248 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
||
| 249 | JDIMENSION blocks_across, MCUs_across, MCUindex; |
||
| 250 | int bi, ci, h_samp_factor, block_row, block_rows, ndummy; |
||
| 251 | JCOEF lastDC; |
||
| 252 | jpeg_component_info *compptr; |
||
| 253 | JBLOCKARRAY buffer; |
||
| 254 | JBLOCKROW thisblockrow, lastblockrow; |
||
| 255 | |||
| 256 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||
| 257 | ci++, compptr++) { |
||
| 258 | /* Align the virtual buffer for this component. */ |
||
| 259 | buffer = (*cinfo->mem->access_virt_barray) |
||
| 260 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
||
| 261 | coef->iMCU_row_num * compptr->v_samp_factor, |
||
| 262 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
||
| 263 | /* Count non-dummy DCT block rows in this iMCU row. */ |
||
| 264 | if (coef->iMCU_row_num < last_iMCU_row) |
||
| 265 | block_rows = compptr->v_samp_factor; |
||
| 266 | else { |
||
| 267 | /* NB: can't use last_row_height here, since may not be set! */ |
||
| 268 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
||
| 269 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
||
| 270 | } |
||
| 271 | blocks_across = compptr->width_in_blocks; |
||
| 272 | h_samp_factor = compptr->h_samp_factor; |
||
| 273 | /* Count number of dummy blocks to be added at the right margin. */ |
||
| 274 | ndummy = (int) (blocks_across % h_samp_factor); |
||
| 275 | if (ndummy > 0) |
||
| 276 | ndummy = h_samp_factor - ndummy; |
||
| 277 | /* Perform DCT for all non-dummy blocks in this iMCU row. Each call |
||
| 278 | * on forward_DCT processes a complete horizontal row of DCT blocks. |
||
| 279 | */ |
||
| 280 | for (block_row = 0; block_row < block_rows; block_row++) { |
||
| 281 | thisblockrow = buffer[block_row]; |
||
| 282 | (*cinfo->fdct->forward_DCT) (cinfo, compptr, |
||
| 283 | input_buf[ci], thisblockrow, |
||
| 284 | (JDIMENSION) (block_row * DCTSIZE), |
||
| 285 | (JDIMENSION) 0, blocks_across); |
||
| 286 | if (ndummy > 0) { |
||
| 287 | /* Create dummy blocks at the right edge of the image. */ |
||
| 288 | thisblockrow += blocks_across; /* => first dummy block */ |
||
| 289 | jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); |
||
| 290 | lastDC = thisblockrow[-1][0]; |
||
| 291 | for (bi = 0; bi < ndummy; bi++) { |
||
| 292 | thisblockrow[bi][0] = lastDC; |
||
| 293 | } |
||
| 294 | } |
||
| 295 | } |
||
| 296 | /* If at end of image, create dummy block rows as needed. |
||
| 297 | * The tricky part here is that within each MCU, we want the DC values |
||
| 298 | * of the dummy blocks to match the last real block's DC value. |
||
| 299 | * This squeezes a few more bytes out of the resulting file... |
||
| 300 | */ |
||
| 301 | if (coef->iMCU_row_num == last_iMCU_row) { |
||
| 302 | blocks_across += ndummy; /* include lower right corner */ |
||
| 303 | MCUs_across = blocks_across / h_samp_factor; |
||
| 304 | for (block_row = block_rows; block_row < compptr->v_samp_factor; |
||
| 305 | block_row++) { |
||
| 306 | thisblockrow = buffer[block_row]; |
||
| 307 | lastblockrow = buffer[block_row-1]; |
||
| 308 | jzero_far((void FAR *) thisblockrow, |
||
| 309 | (size_t) (blocks_across * SIZEOF(JBLOCK))); |
||
| 310 | for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { |
||
| 311 | lastDC = lastblockrow[h_samp_factor-1][0]; |
||
| 312 | for (bi = 0; bi < h_samp_factor; bi++) { |
||
| 313 | thisblockrow[bi][0] = lastDC; |
||
| 314 | } |
||
| 315 | thisblockrow += h_samp_factor; /* advance to next MCU in row */ |
||
| 316 | lastblockrow += h_samp_factor; |
||
| 317 | } |
||
| 318 | } |
||
| 319 | } |
||
| 320 | } |
||
| 321 | /* NB: compress_output will increment iMCU_row_num if successful. |
||
| 322 | * A suspension return will result in redoing all the work above next time. |
||
| 323 | */ |
||
| 324 | |||
| 325 | /* Emit data to the entropy encoder, sharing code with subsequent passes */ |
||
| 326 | return compress_output(cinfo, input_buf); |
||
| 327 | } |
||
| 328 | |||
| 329 | |||
| 330 | /* |
||
| 331 | * Process some data in subsequent passes of a multi-pass case. |
||
| 332 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
||
| 333 | * per call, ie, v_samp_factor block rows for each component in the scan. |
||
| 334 | * The data is obtained from the virtual arrays and fed to the entropy coder. |
||
| 335 | * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
||
| 336 | * |
||
| 337 | * NB: input_buf is ignored; it is likely to be a NULL pointer. |
||
| 338 | */ |
||
| 339 | |||
| 340 | METHODDEF(boolean) |
||
| 341 | compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
||
| 342 | { |
||
| 343 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
||
| 344 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
||
| 345 | int blkn, ci, xindex, yindex, yoffset; |
||
| 346 | JDIMENSION start_col; |
||
| 347 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
||
| 348 | JBLOCKROW buffer_ptr; |
||
| 349 | jpeg_component_info *compptr; |
||
| 350 | |||
| 351 | /* Align the virtual buffers for the components used in this scan. |
||
| 352 | * NB: during first pass, this is safe only because the buffers will |
||
| 353 | * already be aligned properly, so jmemmgr.c won't need to do any I/O. |
||
| 354 | */ |
||
| 355 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||
| 356 | compptr = cinfo->cur_comp_info[ci]; |
||
| 357 | buffer[ci] = (*cinfo->mem->access_virt_barray) |
||
| 358 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
||
| 359 | coef->iMCU_row_num * compptr->v_samp_factor, |
||
| 360 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
||
| 361 | } |
||
| 362 | |||
| 363 | /* Loop to process one whole iMCU row */ |
||
| 364 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
||
| 365 | yoffset++) { |
||
| 366 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; |
||
| 367 | MCU_col_num++) { |
||
| 368 | /* Construct list of pointers to DCT blocks belonging to this MCU */ |
||
| 369 | blkn = 0; /* index of current DCT block within MCU */ |
||
| 370 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
||
| 371 | compptr = cinfo->cur_comp_info[ci]; |
||
| 372 | start_col = MCU_col_num * compptr->MCU_width; |
||
| 373 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
||
| 374 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
||
| 375 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
||
| 376 | coef->MCU_buffer[blkn++] = buffer_ptr++; |
||
| 377 | } |
||
| 378 | } |
||
| 379 | } |
||
| 380 | /* Try to write the MCU. */ |
||
| 381 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
||
| 382 | /* Suspension forced; update state counters and exit */ |
||
| 383 | coef->MCU_vert_offset = yoffset; |
||
| 384 | coef->mcu_ctr = MCU_col_num; |
||
| 385 | return FALSE; |
||
| 386 | } |
||
| 387 | } |
||
| 388 | /* Completed an MCU row, but perhaps not an iMCU row */ |
||
| 389 | coef->mcu_ctr = 0; |
||
| 390 | } |
||
| 391 | /* Completed the iMCU row, advance counters for next one */ |
||
| 392 | coef->iMCU_row_num++; |
||
| 393 | start_iMCU_row(cinfo); |
||
| 394 | return TRUE; |
||
| 395 | } |
||
| 396 | |||
| 397 | #endif /* FULL_COEF_BUFFER_SUPPORTED */ |
||
| 398 | |||
| 399 | |||
| 400 | /* |
||
| 401 | * Initialize coefficient buffer controller. |
||
| 402 | */ |
||
| 403 | |||
| 404 | GLOBAL(void) |
||
| 405 | jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
||
| 406 | { |
||
| 407 | my_coef_ptr coef; |
||
| 408 | |||
| 409 | coef = (my_coef_ptr) |
||
| 410 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||
| 411 | SIZEOF(my_coef_controller)); |
||
| 412 | cinfo->coef = (struct jpeg_c_coef_controller *) coef; |
||
| 413 | coef->pub.start_pass = start_pass_coef; |
||
| 414 | |||
| 415 | /* Create the coefficient buffer. */ |
||
| 416 | if (need_full_buffer) { |
||
| 417 | #ifdef FULL_COEF_BUFFER_SUPPORTED |
||
| 418 | /* Allocate a full-image virtual array for each component, */ |
||
| 419 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
||
| 420 | int ci; |
||
| 421 | jpeg_component_info *compptr; |
||
| 422 | |||
| 423 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
||
| 424 | ci++, compptr++) { |
||
| 425 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
||
| 426 | ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
||
| 427 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
||
| 428 | (long) compptr->h_samp_factor), |
||
| 429 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
||
| 430 | (long) compptr->v_samp_factor), |
||
| 431 | (JDIMENSION) compptr->v_samp_factor); |
||
| 432 | } |
||
| 433 | #else |
||
| 434 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
||
| 435 | #endif |
||
| 436 | } else { |
||
| 437 | /* We only need a single-MCU buffer. */ |
||
| 438 | JBLOCKROW buffer; |
||
| 439 | int i; |
||
| 440 | |||
| 441 | buffer = (JBLOCKROW) |
||
| 442 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
||
| 443 | C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
||
| 444 | for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { |
||
| 445 | coef->MCU_buffer[i] = buffer + i; |
||
| 446 | } |
||
| 447 | coef->whole_image[0] = NULL; /* flag for no virtual arrays */ |
||
| 448 | } |
||
| 449 | } |