/*
* jmemmgr.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the JPEG system-independent memory management
* routines. This code is usable across a wide variety of machines; most
* of the system dependencies have been isolated in a separate file.
* The major functions provided here are:
* * pool-based allocation and freeing of memory;
* * policy decisions about how to divide available memory among the
* virtual arrays;
* * control logic for swapping virtual arrays between main memory and
* backing storage.
* The separate system-dependent file provides the actual backing-storage
* access code, and it contains the policy decision about how much total
* main memory to use.
* This file is system-dependent in the sense that some of its functions
* are unnecessary in some systems. For example, if there is enough virtual
* memory so that backing storage will never be used, much of the virtual
* array control logic could be removed. (Of course, if you have that much
* memory then you shouldn't care about a little bit of unused code...)
*/
#define JPEG_INTERNALS
#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h" /* import the system-dependent declarations */
#ifndef NO_GETENV
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
extern char * getenv JPP
((const char * name
));
#endif
#endif
/*
* Some important notes:
* The allocation routines provided here must never return NULL.
* They should exit to error_exit if unsuccessful.
*
* It's not a good idea to try to merge the sarray and barray routines,
* even though they are textually almost the same, because samples are
* usually stored as bytes while coefficients are shorts or ints. Thus,
* in machines where byte pointers have a different representation from
* word pointers, the resulting machine code could not be the same.
*/
/*
* Many machines require storage alignment: longs must start on 4-byte
* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
* always returns pointers that are multiples of the worst-case alignment
* requirement, and we had better do so too.
* There isn't any really portable way to determine the worst-case alignment
* requirement. This module assumes that the alignment requirement is
* multiples of sizeof(ALIGN_TYPE).
* By default, we define ALIGN_TYPE as double. This is necessary on some
* workstations (where doubles really do need 8-byte alignment) and will work
* fine on nearly everything. If your machine has lesser alignment needs,
* you can save a few bytes by making ALIGN_TYPE smaller.
* The only place I know of where this will NOT work is certain Macintosh
* 680x0 compilers that define double as a 10-byte IEEE extended float.
* Doing 10-byte alignment is counterproductive because longwords won't be
* aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
* such a compiler.
*/
#ifndef ALIGN_TYPE /* so can override from jconfig.h */
#define ALIGN_TYPE double
#endif
/*
* We allocate objects from "pools", where each pool is gotten with a single
* request to jpeg_get_small() or jpeg_get_large(). There is no per-object
* overhead within a pool, except for alignment padding. Each pool has a
* header with a link to the next pool of the same class.
* Small and large pool headers are identical except that the latter's
* link pointer must be FAR on 80x86 machines.
* Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
* field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
* of the alignment requirement of ALIGN_TYPE.
*/
typedef union small_pool_struct
* small_pool_ptr
;
typedef union small_pool_struct
{
struct {
small_pool_ptr next
; /* next in list of pools */
size_t bytes_used
; /* how many bytes already used within pool */
size_t bytes_left
; /* bytes still available in this pool */
} hdr
;
ALIGN_TYPE dummy
; /* included in union to ensure alignment */
} small_pool_hdr
;
typedef union large_pool_struct FAR
* large_pool_ptr
;
typedef union large_pool_struct
{
struct {
large_pool_ptr next
; /* next in list of pools */
size_t bytes_used
; /* how many bytes already used within pool */
size_t bytes_left
; /* bytes still available in this pool */
} hdr
;
ALIGN_TYPE dummy
; /* included in union to ensure alignment */
} large_pool_hdr
;
/*
* Here is the full definition of a memory manager object.
*/
typedef struct {
struct jpeg_memory_mgr pub
; /* public fields */
/* Each pool identifier (lifetime class) names a linked list of pools. */
small_pool_ptr small_list
[JPOOL_NUMPOOLS
];
large_pool_ptr large_list
[JPOOL_NUMPOOLS
];
/* Since we only have one lifetime class of virtual arrays, only one
* linked list is necessary (for each datatype). Note that the virtual
* array control blocks being linked together are actually stored somewhere
* in the small-pool list.
*/
jvirt_sarray_ptr virt_sarray_list
;
jvirt_barray_ptr virt_barray_list
;
/* This counts total space obtained from jpeg_get_small/large */
long total_space_allocated
;
/* alloc_sarray and alloc_barray set this value for use by virtual
* array routines.
*/
JDIMENSION last_rowsperchunk
; /* from most recent alloc_sarray/barray */
} my_memory_mgr
;
typedef my_memory_mgr
* my_mem_ptr
;
/*
* The control blocks for virtual arrays.
* Note that these blocks are allocated in the "small" pool area.
* System-dependent info for the associated backing store (if any) is hidden
* inside the backing_store_info struct.
*/
struct jvirt_sarray_control
{
JSAMPARRAY mem_buffer
; /* => the in-memory buffer */
JDIMENSION rows_in_array
; /* total virtual array height */
JDIMENSION samplesperrow
; /* width of array (and of memory buffer) */
JDIMENSION maxaccess
; /* max rows accessed by access_virt_sarray */
JDIMENSION rows_in_mem
; /* height of memory buffer */
JDIMENSION rowsperchunk
; /* allocation chunk size in mem_buffer */
JDIMENSION cur_start_row
; /* first logical row # in the buffer */
JDIMENSION first_undef_row
; /* row # of first uninitialized row */
boolean pre_zero
; /* pre-zero mode requested? */
boolean dirty
; /* do current buffer contents need written? */
boolean b_s_open
; /* is backing-store data valid? */
jvirt_sarray_ptr next
; /* link to next virtual sarray control block */
backing_store_info b_s_info
; /* System-dependent control info */
};
struct jvirt_barray_control
{
JBLOCKARRAY mem_buffer
; /* => the in-memory buffer */
JDIMENSION rows_in_array
; /* total virtual array height */
JDIMENSION blocksperrow
; /* width of array (and of memory buffer) */
JDIMENSION maxaccess
; /* max rows accessed by access_virt_barray */
JDIMENSION rows_in_mem
; /* height of memory buffer */
JDIMENSION rowsperchunk
; /* allocation chunk size in mem_buffer */
JDIMENSION cur_start_row
; /* first logical row # in the buffer */
JDIMENSION first_undef_row
; /* row # of first uninitialized row */
boolean pre_zero
; /* pre-zero mode requested? */
boolean dirty
; /* do current buffer contents need written? */
boolean b_s_open
; /* is backing-store data valid? */
jvirt_barray_ptr next
; /* link to next virtual barray control block */
backing_store_info b_s_info
; /* System-dependent control info */
};
#ifdef MEM_STATS /* optional extra stuff for statistics */
LOCAL
(void)
print_mem_stats
(j_common_ptr cinfo
, int pool_id
)
{
my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
small_pool_ptr shdr_ptr
;
large_pool_ptr lhdr_ptr
;
/* Since this is only a debugging stub, we can cheat a little by using
* fprintf directly rather than going through the trace message code.
* This is helpful because message parm array can't handle longs.
*/
fprintf(stderr
, "Freeing pool %d, total space = %ld\n",
pool_id
, mem
->total_space_allocated
);
for (lhdr_ptr
= mem
->large_list
[pool_id
]; lhdr_ptr
!= NULL
;
lhdr_ptr
= lhdr_ptr
->hdr.
next) {
fprintf(stderr
, " Large chunk used %ld\n",
(long) lhdr_ptr
->hdr.
bytes_used);
}
for (shdr_ptr
= mem
->small_list
[pool_id
]; shdr_ptr
!= NULL
;
shdr_ptr
= shdr_ptr
->hdr.
next) {
fprintf(stderr
, " Small chunk used %ld free %ld\n",
(long) shdr_ptr
->hdr.
bytes_used,
(long) shdr_ptr
->hdr.
bytes_left);
}
}
#endif /* MEM_STATS */
LOCAL
(void)
out_of_memory
(j_common_ptr cinfo
, int which
)
/* Report an out-of-memory error and stop execution */
/* If we compiled MEM_STATS support, report alloc requests before dying */
{
#ifdef MEM_STATS
cinfo
->err
->trace_level
= 2; /* force self_destruct to report stats */
#endif
ERREXIT1
(cinfo
, JERR_OUT_OF_MEMORY
, which
);
}
/*
* Allocation of "small" objects.
*
* For these, we use pooled storage. When a new pool must be created,
* we try to get enough space for the current request plus a "slop" factor,
* where the slop will be the amount of leftover space in the new pool.
* The speed vs. space tradeoff is largely determined by the slop values.
* A different slop value is provided for each pool class (lifetime),
* and we also distinguish the first pool of a class from later ones.
* NOTE: the values given work fairly well on both 16- and 32-bit-int
* machines, but may be too small if longs are 64 bits or more.
*/
static const size_t first_pool_slop
[JPOOL_NUMPOOLS
] =
{
1600, /* first PERMANENT pool */
16000 /* first IMAGE pool */
};
static const size_t extra_pool_slop
[JPOOL_NUMPOOLS
] =
{
0, /* additional PERMANENT pools */
5000 /* additional IMAGE pools */
};
#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
METHODDEF
(void *)
alloc_small
(j_common_ptr cinfo
, int pool_id
, size_t sizeofobject
)
/* Allocate a "small" object */
{
my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
small_pool_ptr hdr_ptr
, prev_hdr_ptr
;
char * data_ptr
;
size_t odd_bytes
, min_request
, slop
;
/* Check for unsatisfiable request (do now to ensure no overflow below) */
if (sizeofobject
> (size_t) (MAX_ALLOC_CHUNK
-SIZEOF
(small_pool_hdr
)))
out_of_memory
(cinfo
, 1); /* request exceeds malloc's ability */
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
odd_bytes
= sizeofobject
% SIZEOF
(ALIGN_TYPE
);
if (odd_bytes
> 0)
sizeofobject
+= SIZEOF
(ALIGN_TYPE
) - odd_bytes
;
/* See if space is available in any existing pool */
if (pool_id
< 0 || pool_id
>= JPOOL_NUMPOOLS
)
ERREXIT1
(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
prev_hdr_ptr
= NULL
;
hdr_ptr
= mem
->small_list
[pool_id
];
while (hdr_ptr
!= NULL
) {
if (hdr_ptr
->hdr.
bytes_left >= sizeofobject
)
break; /* found pool with enough space */
prev_hdr_ptr
= hdr_ptr
;
hdr_ptr
= hdr_ptr
->hdr.
next;
}
/* Time to make a new pool? */
if (hdr_ptr
== NULL
) {
/* min_request is what we need now, slop is what will be leftover */
min_request
= sizeofobject
+ SIZEOF
(small_pool_hdr
);
if (prev_hdr_ptr
== NULL
) /* first pool in class? */
slop
= first_pool_slop
[pool_id
];
else
slop
= extra_pool_slop
[pool_id
];
/* Don't ask for more than MAX_ALLOC_CHUNK */
if (slop
> (size_t) (MAX_ALLOC_CHUNK
-min_request
))
slop
= (size_t) (MAX_ALLOC_CHUNK
-min_request
);
/* Try to get space, if fail reduce slop and try again */
for (;;) {
hdr_ptr
= (small_pool_ptr
) jpeg_get_small
(cinfo
, min_request
+ slop
);
if (hdr_ptr
!= NULL
)
break;
slop
/= 2;
if (slop
< MIN_SLOP
) /* give up when it gets real small */
out_of_memory
(cinfo
, 2); /* jpeg_get_small failed */
}
mem
->total_space_allocated
+= min_request
+ slop
;
/* Success, initialize the new pool header and add to end of list */
hdr_ptr
->hdr.
next = NULL
;
hdr_ptr
->hdr.
bytes_used = 0;
hdr_ptr
->hdr.
bytes_left = sizeofobject
+ slop
;
if (prev_hdr_ptr
== NULL
) /* first pool in class? */
mem
->small_list
[pool_id
] = hdr_ptr
;
else
prev_hdr_ptr
->hdr.
next = hdr_ptr
;
}
/* OK, allocate the object from the current pool */
data_ptr
= (char *) (hdr_ptr
+ 1); /* point to first data byte in pool */
data_ptr
+= hdr_ptr
->hdr.
bytes_used; /* point to place for object */
hdr_ptr
->hdr.
bytes_used += sizeofobject
;
hdr_ptr
->hdr.
bytes_left -= sizeofobject
;
return (void *) data_ptr
;
}
/*
* Allocation of "large" objects.
*
* The external semantics of these are the same as "small" objects,
* except that FAR pointers are used on 80x86. However the pool
* management heuristics are quite different. We assume that each
* request is large enough that it may as well be passed directly to
* jpeg_get_large; the pool management just links everything together
* so that we can free it all on demand.
* Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
* structures. The routines that create these structures (see below)
* deliberately bunch rows together to ensure a large request size.
*/
METHODDEF
(void FAR
*)
alloc_large
(j_common_ptr cinfo
, int pool_id
, size_t sizeofobject
)
/* Allocate a "large" object */
{
my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
large_pool_ptr hdr_ptr
;
size_t odd_bytes
;
/* Check for unsatisfiable request (do now to ensure no overflow below) */
if (sizeofobject
> (size_t) (MAX_ALLOC_CHUNK
-SIZEOF
(large_pool_hdr
)))
out_of_memory
(cinfo
, 3); /* request exceeds malloc's ability */
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
odd_bytes
= sizeofobject
% SIZEOF
(ALIGN_TYPE
);
if (odd_bytes
> 0)
sizeofobject
+= SIZEOF
(ALIGN_TYPE
) - odd_bytes
;
/* Always make a new pool */
if (pool_id
< 0 || pool_id
>= JPOOL_NUMPOOLS
)
ERREXIT1
(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
hdr_ptr
= (large_pool_ptr
) jpeg_get_large
(cinfo
, sizeofobject
+
SIZEOF
(large_pool_hdr
));
if (hdr_ptr
== NULL
)
out_of_memory
(cinfo
, 4); /* jpeg_get_large failed */
mem
->total_space_allocated
+= sizeofobject
+ SIZEOF
(large_pool_hdr
);
/* Success, initialize the new pool header and add to list */
hdr_ptr
->hdr.
next = mem
->large_list
[pool_id
];
/* We maintain space counts in each pool header for statistical purposes,
* even though they are not needed for allocation.
*/
hdr_ptr
->hdr.
bytes_used = sizeofobject
;
hdr_ptr
->hdr.
bytes_left = 0;
mem
->large_list
[pool_id
] = hdr_ptr
;
return (void FAR
*) (hdr_ptr
+ 1); /* point to first data byte in pool */
}
/*
* Creation of 2-D sample arrays.
* The pointers are in near heap, the samples themselves in FAR heap.
*
* To minimize allocation overhead and to allow I/O of large contiguous
* blocks, we allocate the sample rows in groups of as many rows as possible
* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
* NB: the virtual array control routines, later in this file, know about
* this chunking of rows. The rowsperchunk value is left in the mem manager
* object so that it can be saved away if this sarray is the workspace for
* a virtual array.
*/
METHODDEF
(JSAMPARRAY
)
alloc_sarray
(j_common_ptr cinfo
, int pool_id
,
JDIMENSION samplesperrow
, JDIMENSION numrows
)
/* Allocate a 2-D sample array */
{
my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
JSAMPARRAY result
;
JSAMPROW workspace
;
JDIMENSION rowsperchunk
, currow
, i
;
long ltemp
;
/* Calculate max # of rows allowed in one allocation chunk */
ltemp
= (MAX_ALLOC_CHUNK
-SIZEOF
(large_pool_hdr
)) /
((long) samplesperrow
* SIZEOF
(JSAMPLE
));
if (ltemp
<= 0)
ERREXIT
(cinfo
, JERR_WIDTH_OVERFLOW
);
if (ltemp
< (long) numrows
)
rowsperchunk
= (JDIMENSION
) ltemp
;
else
rowsperchunk
= numrows
;
mem
->last_rowsperchunk
= rowsperchunk
;
/* Get space for row pointers (small object) */
result
= (JSAMPARRAY
) alloc_small
(cinfo
, pool_id
,
(size_t) (numrows
* SIZEOF
(JSAMPROW
)));
/* Get the rows themselves (large objects) */
currow
= 0;
while (currow
< numrows
) {
rowsperchunk
= MIN
(rowsperchunk
, numrows
- currow
);
workspace
= (JSAMPROW
) alloc_large
(cinfo
, pool_id
,
(size_t) ((size_t) rowsperchunk
* (size_t) samplesperrow
* SIZEOF
(JSAMPLE
)));
for (i
= rowsperchunk
; i
> 0; i
--) {
result
[currow
++] = workspace
;
workspace
+= samplesperrow
;
}
}
return result
;
}
/*
* Creation of 2-D coefficient-block arrays.
* This is essentially the same as the code for sample arrays, above.
*/
METHODDEF
(JBLOCKARRAY
)
alloc_barray
(j_common_ptr cinfo
, int pool_id
,
JDIMENSION blocksperrow
, JDIMENSION numrows
)
/* Allocate a 2-D coefficient-block array */
{
my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
JBLOCKARRAY result
;
JBLOCKROW workspace
;
JDIMENSION rowsperchunk
, currow
, i
;
long ltemp
;
/* Calculate max # of rows allowed in one allocation chunk */
ltemp
= (MAX_ALLOC_CHUNK
-SIZEOF
(large_pool_hdr
)) /
((long) blocksperrow
* SIZEOF
(JBLOCK
));
if (ltemp
<= 0)
ERREXIT
(cinfo
, JERR_WIDTH_OVERFLOW
);
if (ltemp
< (long) numrows
)
rowsperchunk
= (JDIMENSION
) ltemp
;
else
rowsperchunk
= numrows
;
mem
->last_rowsperchunk
= rowsperchunk
;
/* Get space for row pointers (small object) */
result
= (JBLOCKARRAY
) alloc_small
(cinfo
, pool_id
,
(size_t) (numrows
* SIZEOF
(JBLOCKROW
)));
/* Get the rows themselves (large objects) */
currow
= 0;
while (currow
< numrows
) {
rowsperchunk
= MIN
(rowsperchunk
, numrows
- currow
);
workspace
= (JBLOCKROW
) alloc_large
(cinfo
, pool_id
,
(size_t) ((size_t) rowsperchunk
* (size_t) blocksperrow
* SIZEOF
(JBLOCK
)));
for (i
= rowsperchunk
; i
> 0; i
--) {
result
[currow
++] = workspace
;
workspace
+= blocksperrow
;
}
}
return result
;
}
/*
* About virtual array management:
*
* The above "normal" array routines are only used to allocate strip buffers
* (as wide as the image, but just a few rows high). Full-image-sized buffers
* are handled as "virtual" arrays. The array is still accessed a strip at a
* time, but the memory manager must save the whole array for repeated
* accesses. The intended implementation is that there is a strip buffer in
* memory (as high as is possible given the desired memory limit), plus a
* backing file that holds the rest of the array.
*
* The request_virt_array routines are told the total size of the image and
* the maximum number of rows that will be accessed at once. The in-memory
* buffer must be at least as large as the maxaccess value.
*
* The request routines create control blocks but not the in-memory buffers.
* That is postponed until realize_virt_arrays is called. At that time the
* total amount of space needed is known (approximately, anyway), so free
* memory can be divided up fairly.
*
* The access_virt_array routines are responsible for making a specific strip
* area accessible (after reading or writing the backing file, if necessary).
* Note that the access routines are told whether the caller intends to modify
* the accessed strip; during a read-only pass this saves having to rewrite
* data to disk. The access routines are also responsible for pre-zeroing
* any newly accessed rows, if pre-zeroing was requested.
*
* In current usage, the access requests are usually for nonoverlapping
* strips; that is, successive access start_row numbers differ by exactly
* num_rows = maxaccess. This means we can get good performance with simple
* buffer dump/reload logic, by making the in-memory buffer be a multiple
* of the access height; then there will never be accesses across bufferload
* boundaries. The code will still work with overlapping access requests,
* but it doesn't handle bufferload overlaps very efficiently.
*/
METHODDEF
(jvirt_sarray_ptr
)
request_virt_sarray
(j_common_ptr cinfo
, int pool_id
, boolean pre_zero
,
JDIMENSION samplesperrow
, JDIMENSION numrows
,
JDIMENSION maxaccess
)
/* Request a virtual 2-D sample array */
{
my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
jvirt_sarray_ptr result
;
/* Only IMAGE-lifetime virtual arrays are currently supported */
if (pool_id
!= JPOOL_IMAGE
)
ERREXIT1
(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
/* get control block */
result
= (jvirt_sarray_ptr
) alloc_small
(cinfo
, pool_id
,
SIZEOF
(struct jvirt_sarray_control
));
result
->mem_buffer
= NULL
; /* marks array not yet realized */
result
->rows_in_array
= numrows
;
result
->samplesperrow
= samplesperrow
;
result
->maxaccess
= maxaccess
;
result
->pre_zero
= pre_zero
;
result
->b_s_open
= FALSE
; /* no associated backing-store object */
result
->next
= mem
->virt_sarray_list
; /* add to list of virtual arrays */
mem
->virt_sarray_list
= result
;
return result
;
}
METHODDEF
(jvirt_barray_ptr
)
request_virt_barray
(j_common_ptr cinfo
, int pool_id
, boolean pre_zero
,
JDIMENSION blocksperrow
, JDIMENSION numrows
,
JDIMENSION maxaccess
)
/* Request a virtual 2-D coefficient-block array */
{
my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
jvirt_barray_ptr result
;
/* Only IMAGE-lifetime virtual arrays are currently supported */
if (pool_id
!= JPOOL_IMAGE
)
ERREXIT1
(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
/* get control block */
result
= (jvirt_barray_ptr
) alloc_small
(cinfo
, pool_id
,
SIZEOF
(struct jvirt_barray_control
));
result
->mem_buffer
= NULL
; /* marks array not yet realized */
result
->rows_in_array
= numrows
;
result
->blocksperrow
= blocksperrow
;
result
->maxaccess
= maxaccess
;
result
->pre_zero
= pre_zero
;
result
->b_s_open
= FALSE
; /* no associated backing-store object */
result
->next
= mem
->virt_barray_list
; /* add to list of virtual arrays */
mem
->virt_barray_list
= result
;
return result
;
}
METHODDEF
(void)
realize_virt_arrays
(j_common_ptr cinfo
)
/* Allocate the in-memory buffers for any unrealized virtual arrays */
{
my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
long space_per_minheight
, maximum_space
, avail_mem
;
long minheights
, max_minheights
;
jvirt_sarray_ptr sptr
;
jvirt_barray_ptr bptr
;
/* Compute the minimum space needed (maxaccess rows in each buffer)
* and the maximum space needed (full image height in each buffer).
* These may be of use to the system-dependent jpeg_mem_available routine.
*/
space_per_minheight
= 0;
maximum_space
= 0;
for (sptr
= mem
->virt_sarray_list
; sptr
!= NULL
; sptr
= sptr
->next
) {
if (sptr
->mem_buffer
== NULL
) { /* if not realized yet */
space_per_minheight
+= (long) sptr
->maxaccess
*
(long) sptr
->samplesperrow
* SIZEOF
(JSAMPLE
);
maximum_space
+= (long) sptr
->rows_in_array
*
(long) sptr
->samplesperrow
* SIZEOF
(JSAMPLE
);
}
}
for (bptr
= mem
->virt_barray_list
; bptr
!= NULL
; bptr
= bptr
->next
) {
if (bptr
->mem_buffer
== NULL
) { /* if not realized yet */
space_per_minheight
+= (long) bptr
->maxaccess
*
(long) bptr
->blocksperrow
* SIZEOF
(JBLOCK
);
maximum_space
+= (long) bptr
->rows_in_array
*
(long) bptr
->blocksperrow
* SIZEOF
(JBLOCK
);
}
}
if (space_per_minheight
<= 0)
return; /* no unrealized arrays, no work */
/* Determine amount of memory to actually use; this is system-dependent. */
avail_mem
= jpeg_mem_available
(cinfo
, space_per_minheight
, maximum_space
,
mem
->total_space_allocated
);
/* If the maximum space needed is available, make all the buffers full
* height; otherwise parcel it out with the same number of minheights
* in each buffer.
*/
if (avail_mem
>= maximum_space
)
max_minheights
= 1000000000L;
else {
max_minheights
= avail_mem
/ space_per_minheight
;
/* If there doesn't seem to be enough space, try to get the minimum
* anyway. This allows a "stub" implementation of jpeg_mem_available().
*/
if (max_minheights
<= 0)
max_minheights
= 1;
}
/* Allocate the in-memory buffers and initialize backing store as needed. */
for (sptr
= mem
->virt_sarray_list
; sptr
!= NULL
; sptr
= sptr
->next
) {
if (sptr
->mem_buffer
== NULL
) { /* if not realized yet */
minheights
= ((long) sptr
->rows_in_array
- 1L) / sptr
->maxaccess
+ 1L;
if (minheights
<= max_minheights
) {
/* This buffer fits in memory */
sptr
->rows_in_mem
= sptr
->rows_in_array
;
} else {
/* It doesn't fit in memory, create backing store. */
sptr
->rows_in_mem
= (JDIMENSION
) (max_minheights
* sptr
->maxaccess
);
jpeg_open_backing_store
(cinfo
, & sptr
->b_s_info
,
(long) sptr
->rows_in_array
*
(long) sptr
->samplesperrow
*
(long) SIZEOF
(JSAMPLE
));
sptr
->b_s_open
= TRUE
;
}
sptr
->mem_buffer
= alloc_sarray
(cinfo
, JPOOL_IMAGE
,
sptr
->samplesperrow
, sptr
->rows_in_mem
);
sptr
->rowsperchunk
= mem
->last_rowsperchunk
;
sptr
->cur_start_row
= 0;
sptr
->first_undef_row
= 0;
sptr
->dirty
= FALSE
;
}
}
for (bptr
= mem
->virt_barray_list
; bptr
!= NULL
; bptr
= bptr
->next
) {
if (bptr
->mem_buffer
== NULL
) { /* if not realized yet */
minheights
= ((long) bptr
->rows_in_array
- 1L) / bptr
->maxaccess
+ 1L;
if (minheights
<= max_minheights
) {
/* This buffer fits in memory */
bptr
->rows_in_mem
= bptr
->rows_in_array
;
} else {
/* It doesn't fit in memory, create backing store. */
bptr
->rows_in_mem
= (JDIMENSION
) (max_minheights
* bptr
->maxaccess
);
jpeg_open_backing_store
(cinfo
, & bptr
->b_s_info
,
(long) bptr
->rows_in_array
*
(long) bptr
->blocksperrow
*
(long) SIZEOF
(JBLOCK
));
bptr
->b_s_open
= TRUE
;
}
bptr
->mem_buffer
= alloc_barray
(cinfo
, JPOOL_IMAGE
,
bptr
->blocksperrow
, bptr
->rows_in_mem
);
bptr
->rowsperchunk
= mem
->last_rowsperchunk
;
bptr
->cur_start_row
= 0;
bptr
->first_undef_row
= 0;
bptr
->dirty
= FALSE
;
}
}
}
LOCAL
(void)
do_sarray_io
(j_common_ptr cinfo
, jvirt_sarray_ptr ptr
, boolean writing
)
/* Do backing store read or write of a virtual sample array */
{
long bytesperrow
, file_offset
, byte_count
, rows
, thisrow
, i
;
bytesperrow
= (long) ptr
->samplesperrow
* SIZEOF
(JSAMPLE
);
file_offset
= ptr
->cur_start_row
* bytesperrow
;
/* Loop to read or write each allocation chunk in mem_buffer */
for (i
= 0; i
< (long) ptr
->rows_in_mem
; i
+= ptr
->rowsperchunk
) {
/* One chunk, but check for short chunk at end of buffer */
rows
= MIN
((long) ptr
->rowsperchunk
, (long) ptr
->rows_in_mem
- i
);
/* Transfer no more than is currently defined */
thisrow
= (long) ptr
->cur_start_row
+ i
;
rows
= MIN
(rows
, (long) ptr
->first_undef_row
- thisrow
);
/* Transfer no more than fits in file */
rows
= MIN
(rows
, (long) ptr
->rows_in_array
- thisrow
);
if (rows
<= 0) /* this chunk might be past end of file! */
break;
byte_count
= rows
* bytesperrow
;
if (writing
)
(*ptr
->b_s_info.
write_backing_store) (cinfo
, & ptr
->b_s_info
,
(void FAR
*) ptr
->mem_buffer
[i
],
file_offset
, byte_count
);
else
(*ptr
->b_s_info.
read_backing_store) (cinfo
, & ptr
->b_s_info
,
(void FAR
*) ptr
->mem_buffer
[i
],
file_offset
, byte_count
);
file_offset
+= byte_count
;
}
}
LOCAL
(void)
do_barray_io
(j_common_ptr cinfo
, jvirt_barray_ptr ptr
, boolean writing
)
/* Do backing store read or write of a virtual coefficient-block array */
{
long bytesperrow
, file_offset
, byte_count
, rows
, thisrow
, i
;
bytesperrow
= (long) ptr
->blocksperrow
* SIZEOF
(JBLOCK
);
file_offset
= ptr
->cur_start_row
* bytesperrow
;
/* Loop to read or write each allocation chunk in mem_buffer */
for (i
= 0; i
< (long) ptr
->rows_in_mem
; i
+= ptr
->rowsperchunk
) {
/* One chunk, but check for short chunk at end of buffer */
rows
= MIN
((long) ptr
->rowsperchunk
, (long) ptr
->rows_in_mem
- i
);
/* Transfer no more than is currently defined */
thisrow
= (long) ptr
->cur_start_row
+ i
;
rows
= MIN
(rows
, (long) ptr
->first_undef_row
- thisrow
);
/* Transfer no more than fits in file */
rows
= MIN
(rows
, (long) ptr
->rows_in_array
- thisrow
);
if (rows
<= 0) /* this chunk might be past end of file! */
break;
byte_count
= rows
* bytesperrow
;
if (writing
)
(*ptr
->b_s_info.
write_backing_store) (cinfo
, & ptr
->b_s_info
,
(void FAR
*) ptr
->mem_buffer
[i
],
file_offset
, byte_count
);
else
(*ptr
->b_s_info.
read_backing_store) (cinfo
, & ptr
->b_s_info
,
(void FAR
*) ptr
->mem_buffer
[i
],
file_offset
, byte_count
);
file_offset
+= byte_count
;
}
}
METHODDEF
(JSAMPARRAY
)
access_virt_sarray
(j_common_ptr cinfo
, jvirt_sarray_ptr ptr
,
JDIMENSION start_row
, JDIMENSION num_rows
,
boolean writable
)
/* Access the part of a virtual sample array starting at start_row */
/* and extending for num_rows rows. writable is true if */
/* caller intends to modify the accessed area. */
{
JDIMENSION end_row
= start_row
+ num_rows
;
JDIMENSION undef_row
;
/* debugging check */
if (end_row
> ptr
->rows_in_array
|| num_rows
> ptr
->maxaccess
||
ptr
->mem_buffer
== NULL
)
ERREXIT
(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
/* Make the desired part of the virtual array accessible */
if (start_row
< ptr
->cur_start_row
||
end_row
> ptr
->cur_start_row
+ptr
->rows_in_mem
) {
if (! ptr
->b_s_open
)
ERREXIT
(cinfo
, JERR_VIRTUAL_BUG
);
/* Flush old buffer contents if necessary */
if (ptr
->dirty
) {
do_sarray_io
(cinfo
, ptr
, TRUE
);
ptr
->dirty
= FALSE
;
}
/* Decide what part of virtual array to access.
* Algorithm: if target address > current window, assume forward scan,
* load starting at target address. If target address < current window,
* assume backward scan, load so that target area is top of window.
* Note that when switching from forward write to forward read, will have
* start_row = 0, so the limiting case applies and we load from 0 anyway.
*/
if (start_row
> ptr
->cur_start_row
) {
ptr
->cur_start_row
= start_row
;
} else {
/* use long arithmetic here to avoid overflow & unsigned problems */
long ltemp
;
ltemp
= (long) end_row
- (long) ptr
->rows_in_mem
;
if (ltemp
< 0)
ltemp
= 0; /* don't fall off front end of file */
ptr
->cur_start_row
= (JDIMENSION
) ltemp
;
}
/* Read in the selected part of the array.
* During the initial write pass, we will do no actual read
* because the selected part is all undefined.
*/
do_sarray_io
(cinfo
, ptr
, FALSE
);
}
/* Ensure the accessed part of the array is defined; prezero if needed.
* To improve locality of access, we only prezero the part of the array
* that the caller is about to access, not the entire in-memory array.
*/
if (ptr
->first_undef_row
< end_row
) {
if (ptr
->first_undef_row
< start_row
) {
if (writable
) /* writer skipped over a section of array */
ERREXIT
(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
undef_row
= start_row
; /* but reader is allowed to read ahead */
} else {
undef_row
= ptr
->first_undef_row
;
}
if (writable
)
ptr
->first_undef_row
= end_row
;
if (ptr
->pre_zero
) {
size_t bytesperrow
= (size_t) ptr
->samplesperrow
* SIZEOF
(JSAMPLE
);
undef_row
-= ptr
->cur_start_row
; /* make indexes relative to buffer */
end_row
-= ptr
->cur_start_row
;
while (undef_row
< end_row
) {
jzero_far
((void FAR
*) ptr
->mem_buffer
[undef_row
], bytesperrow
);
undef_row
++;
}
} else {
if (! writable
) /* reader looking at undefined data */
ERREXIT
(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
}
}
/* Flag the buffer dirty if caller will write in it */
if (writable
)
ptr
->dirty
= TRUE
;
/* Return address of proper part of the buffer */
return ptr
->mem_buffer
+ (start_row
- ptr
->cur_start_row
);
}
METHODDEF
(JBLOCKARRAY
)
access_virt_barray
(j_common_ptr cinfo
, jvirt_barray_ptr ptr
,
JDIMENSION start_row
, JDIMENSION num_rows
,
boolean writable
)
/* Access the part of a virtual block array starting at start_row */
/* and extending for num_rows rows. writable is true if */
/* caller intends to modify the accessed area. */
{
JDIMENSION end_row
= start_row
+ num_rows
;
JDIMENSION undef_row
;
/* debugging check */
if (end_row
> ptr
->rows_in_array
|| num_rows
> ptr
->maxaccess
||
ptr
->mem_buffer
== NULL
)
ERREXIT
(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
/* Make the desired part of the virtual array accessible */
if (start_row
< ptr
->cur_start_row
||
end_row
> ptr
->cur_start_row
+ptr
->rows_in_mem
) {
if (! ptr
->b_s_open
)
ERREXIT
(cinfo
, JERR_VIRTUAL_BUG
);
/* Flush old buffer contents if necessary */
if (ptr
->dirty
) {
do_barray_io
(cinfo
, ptr
, TRUE
);
ptr
->dirty
= FALSE
;
}
/* Decide what part of virtual array to access.
* Algorithm: if target address > current window, assume forward scan,
* load starting at target address. If target address < current window,
* assume backward scan, load so that target area is top of window.
* Note that when switching from forward write to forward read, will have
* start_row = 0, so the limiting case applies and we load from 0 anyway.
*/
if (start_row
> ptr
->cur_start_row
) {
ptr
->cur_start_row
= start_row
;
} else {
/* use long arithmetic here to avoid overflow & unsigned problems */
long ltemp
;
ltemp
= (long) end_row
- (long) ptr
->rows_in_mem
;
if (ltemp
< 0)
ltemp
= 0; /* don't fall off front end of file */
ptr
->cur_start_row
= (JDIMENSION
) ltemp
;
}
/* Read in the selected part of the array.
* During the initial write pass, we will do no actual read
* because the selected part is all undefined.
*/
do_barray_io
(cinfo
, ptr
, FALSE
);
}
/* Ensure the accessed part of the array is defined; prezero if needed.
* To improve locality of access, we only prezero the part of the array
* that the caller is about to access, not the entire in-memory array.
*/
if (ptr
->first_undef_row
< end_row
) {
if (ptr
->first_undef_row
< start_row
) {
if (writable
) /* writer skipped over a section of array */
ERREXIT
(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
undef_row
= start_row
; /* but reader is allowed to read ahead */
} else {
undef_row
= ptr
->first_undef_row
;
}
if (writable
)
ptr
->first_undef_row
= end_row
;
if (ptr
->pre_zero
) {
size_t bytesperrow
= (size_t) ptr
->blocksperrow
* SIZEOF
(JBLOCK
);
undef_row
-= ptr
->cur_start_row
; /* make indexes relative to buffer */
end_row
-= ptr
->cur_start_row
;
while (undef_row
< end_row
) {
jzero_far
((void FAR
*) ptr
->mem_buffer
[undef_row
], bytesperrow
);
undef_row
++;
}
} else {
if (! writable
) /* reader looking at undefined data */
ERREXIT
(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
}
}
/* Flag the buffer dirty if caller will write in it */
if (writable
)
ptr
->dirty
= TRUE
;
/* Return address of proper part of the buffer */
return ptr
->mem_buffer
+ (start_row
- ptr
->cur_start_row
);
}
/*
* Release all objects belonging to a specified pool.
*/
METHODDEF
(void)
free_pool
(j_common_ptr cinfo
, int pool_id
)
{
my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
small_pool_ptr shdr_ptr
;
large_pool_ptr lhdr_ptr
;
size_t space_freed
;
if (pool_id
< 0 || pool_id
>= JPOOL_NUMPOOLS
)
ERREXIT1
(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
#ifdef MEM_STATS
if (cinfo
->err
->trace_level
> 1)
print_mem_stats
(cinfo
, pool_id
); /* print pool's memory usage statistics */
#endif
/* If freeing IMAGE pool, close any virtual arrays first */
if (pool_id
== JPOOL_IMAGE
) {
jvirt_sarray_ptr sptr
;
jvirt_barray_ptr bptr
;
for (sptr
= mem
->virt_sarray_list
; sptr
!= NULL
; sptr
= sptr
->next
) {
if (sptr
->b_s_open
) { /* there may be no backing store */
sptr
->b_s_open
= FALSE
; /* prevent recursive close if error */
(*sptr
->b_s_info.
close_backing_store) (cinfo
, & sptr
->b_s_info
);
}
}
mem
->virt_sarray_list
= NULL
;
for (bptr
= mem
->virt_barray_list
; bptr
!= NULL
; bptr
= bptr
->next
) {
if (bptr
->b_s_open
) { /* there may be no backing store */
bptr
->b_s_open
= FALSE
; /* prevent recursive close if error */
(*bptr
->b_s_info.
close_backing_store) (cinfo
, & bptr
->b_s_info
);
}
}
mem
->virt_barray_list
= NULL
;
}
/* Release large objects */
lhdr_ptr
= mem
->large_list
[pool_id
];
mem
->large_list
[pool_id
] = NULL
;
while (lhdr_ptr
!= NULL
) {
large_pool_ptr next_lhdr_ptr
= lhdr_ptr
->hdr.
next;
space_freed
= lhdr_ptr
->hdr.
bytes_used +
lhdr_ptr
->hdr.
bytes_left +
SIZEOF
(large_pool_hdr
);
jpeg_free_large
(cinfo
, (void FAR
*) lhdr_ptr
, space_freed
);
mem
->total_space_allocated
-= space_freed
;
lhdr_ptr
= next_lhdr_ptr
;
}
/* Release small objects */
shdr_ptr
= mem
->small_list
[pool_id
];
mem
->small_list
[pool_id
] = NULL
;
while (shdr_ptr
!= NULL
) {
small_pool_ptr next_shdr_ptr
= shdr_ptr
->hdr.
next;
space_freed
= shdr_ptr
->hdr.
bytes_used +
shdr_ptr
->hdr.
bytes_left +
SIZEOF
(small_pool_hdr
);
jpeg_free_small
(cinfo
, (void *) shdr_ptr
, space_freed
);
mem
->total_space_allocated
-= space_freed
;
shdr_ptr
= next_shdr_ptr
;
}
}
/*
* Close up shop entirely.
* Note that this cannot be called unless cinfo->mem is non-NULL.
*/
METHODDEF
(void)
self_destruct
(j_common_ptr cinfo
)
{
int pool
;
/* Close all backing store, release all memory.
* Releasing pools in reverse order might help avoid fragmentation
* with some (brain-damaged) malloc libraries.
*/
for (pool
= JPOOL_NUMPOOLS
-1; pool
>= JPOOL_PERMANENT
; pool
--) {
free_pool
(cinfo
, pool
);
}
/* Release the memory manager control block too. */
jpeg_free_small
(cinfo
, (void *) cinfo
->mem
, SIZEOF
(my_memory_mgr
));
cinfo
->mem
= NULL
; /* ensures I will be called only once */
jpeg_mem_term
(cinfo
); /* system-dependent cleanup */
}
/*
* Memory manager initialization.
* When this is called, only the error manager pointer is valid in cinfo!
*/
GLOBAL
(void)
jinit_memory_mgr
(j_common_ptr cinfo
)
{
my_mem_ptr mem
;
long max_to_use
;
int pool
;
size_t test_mac
;
cinfo
->mem
= NULL
; /* for safety if init fails */
/* Check for configuration errors.
* SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
* doesn't reflect any real hardware alignment requirement.
* The test is a little tricky: for X>0, X and X-1 have no one-bits
* in common if and only if X is a power of 2, ie has only one one-bit.
* Some compilers may give an "unreachable code" warning here; ignore it.
*/
if ((SIZEOF
(ALIGN_TYPE
) & (SIZEOF
(ALIGN_TYPE
)-1)) != 0)
ERREXIT
(cinfo
, JERR_BAD_ALIGN_TYPE
);
/* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
* a multiple of SIZEOF(ALIGN_TYPE).
* Again, an "unreachable code" warning may be ignored here.
* But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
*/
test_mac
= (size_t) MAX_ALLOC_CHUNK
;
if ((long) test_mac
!= MAX_ALLOC_CHUNK
||
(MAX_ALLOC_CHUNK
% SIZEOF
(ALIGN_TYPE
)) != 0)
ERREXIT
(cinfo
, JERR_BAD_ALLOC_CHUNK
);
max_to_use
= jpeg_mem_init
(cinfo
); /* system-dependent initialization */
/* Attempt to allocate memory manager's control block */
mem
= (my_mem_ptr
) jpeg_get_small
(cinfo
, SIZEOF
(my_memory_mgr
));
if (mem
== NULL
) {
jpeg_mem_term
(cinfo
); /* system-dependent cleanup */
ERREXIT1
(cinfo
, JERR_OUT_OF_MEMORY
, 0);
}
/* OK, fill in the method pointers */
mem
->pub.
alloc_small = alloc_small
;
mem
->pub.
alloc_large = alloc_large
;
mem
->pub.
alloc_sarray = alloc_sarray
;
mem
->pub.
alloc_barray = alloc_barray
;
mem
->pub.
request_virt_sarray = request_virt_sarray
;
mem
->pub.
request_virt_barray = request_virt_barray
;
mem
->pub.
realize_virt_arrays = realize_virt_arrays
;
mem
->pub.
access_virt_sarray = access_virt_sarray
;
mem
->pub.
access_virt_barray = access_virt_barray
;
mem
->pub.
free_pool = free_pool
;
mem
->pub.
self_destruct = self_destruct
;
/* Make MAX_ALLOC_CHUNK accessible to other modules */
mem
->pub.
max_alloc_chunk = MAX_ALLOC_CHUNK
;
/* Initialize working state */
mem
->pub.
max_memory_to_use = max_to_use
;
for (pool
= JPOOL_NUMPOOLS
-1; pool
>= JPOOL_PERMANENT
; pool
--) {
mem
->small_list
[pool
] = NULL
;
mem
->large_list
[pool
] = NULL
;
}
mem
->virt_sarray_list
= NULL
;
mem
->virt_barray_list
= NULL
;
mem
->total_space_allocated
= SIZEOF
(my_memory_mgr
);
/* Declare ourselves open for business */
cinfo
->mem
= & mem
->pub
;
/* Check for an environment variable JPEGMEM; if found, override the
* default max_memory setting from jpeg_mem_init. Note that the
* surrounding application may again override this value.
* If your system doesn't support getenv(), define NO_GETENV to disable
* this feature.
*/
#ifndef NO_GETENV
{ char * memenv
;
if ((memenv
= getenv("JPEGMEM")) != NULL
) {
char ch
= 'x';
if (sscanf(memenv
, "%ld%c", &max_to_use
, &ch
) > 0) {
if (ch
== 'm' || ch
== 'M')
max_to_use
*= 1000L;
mem
->pub.
max_memory_to_use = max_to_use
* 1000L;
}
}
}
#endif
}